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RADIATIVE HEAT TRANSFER BETWEEN A 
F L U I D I Z E D  BED AND A SURFACE 
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Abstract--A model of radiative heat transfer in a dispersed medium is suggested which allows the calculation 
of the emissivity of an isothermal fluidized bed, the effective emissive ability of a non-isothermal bed and the 
temperature distribution near a heat transfer surface in a bed of a certain expansion when the radiative 

properties of the particles and the heat exchanger are prescribed. 
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N O M E N C L A T U R E  

particle diameter; 
effective thermal conductivity of a gas 
interlayer between adjacent elementary 
layers of the model ; 
thickness of gas interlayer between ad- 
jacent elementary layers of the model; 
porosity; 
number of elementary layers in the 
model ; 
radiation flux ; 
heat flux density; 
radiosity of cell elements a, i, c, d induced 
by external radiation ; 
radiosity of cell elements a', i', c', d' 
induced by external radiation ; 
background radiosity of cell elements e, f, 
g , h ;  
background radiosity of cell elements e', 
f', g', h ' ;  
external radiation flux; 
refiectivity; 
reflectivity of i elementary layers of the 
model ; 
reflectivity of i elementary layers of the 
model and of the bounding, 0 ( - )  or 
N + 1 (+) ,  surface; 
surface area of the cell elements a, i, c, d, a', 
i', c', d ' ;  
surface area of the cell elements e, f, g, h, e', 
f', g', h ' ;  
surface area of the cell element m ; 
temperature [K] ; 
distance between centers of neighbouring 
particles in terms of their diameters; 
temperature [~ 

Greek symbols 

cq heat transfer coefficient; 
3p, radiosity of cell elements a, i, c, d induced 

by background radiation; 
3'p, radiosity of cell elements a', i', c', d' 

induced by background radiation; 
r. emissivity; 

0", 

T, 

Stefan-Boltzmann constant ; 
transmissMty coefficient; 
transmissivity coefficient of i elementary 
layers of the model. 

Subscripts 

abs, absorbed ; 
b, black body ; 
e, effective ; 
f, incident ; 
fb, fluidized bed ; 
kk, convective-conductive ; 
p, particle ; 
r, radiative; 
ref, reflected ; 
t, elementary layer; 
trans, transmitted; 
w, walt. 

I N T R O D U C T I O N  

TIlE RISE of temperature in fluidized-bed equipment 
has a double effect on the intensity of external heat 
transfer. Firstly, a change occurs in the thermophysical 
properties of a dispersed material and, particularly 
importantly, of a fluid. As a result, the hydrodynamics 
of the bed and its transport properties alter [1]. 
Secondly, the mechanism of energy transfer between a 
heat exchanger and a fluidized bed is made much more 
involved. The radiative transport, which is negligible in 
low-temperature systems, becomes significant. The 
radiative transport may comprise a number of phenom- 
ena [1], conditioned by the high concentration of 
scattering particles and the wave properties of 
radiation. 

The effect of these phenomena is very difficult to take 
into account and at present there is virtually no 
relationship which would allow the calculation of the 
emissive ability of a fluidized bed and of the radiative 
fluxes over a wide range of particle properties. (The 
estimates reported [1, 2] have been made on the 
assumption that the particles forming the bed are 
ideally black.) 

At the same time, a technique for computing 
radiation transfer in a fluidized bed in a wide range of 
particle properties would be of great value, particularly 
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in view of the fact that particles of metal oxides, 
commonly used as high-temperature heat-transfer 
agents, are characterized by a high reflectivity, and the 
black body approximation is inapplicable: 

The objectives of this study were to determine more 
precisely the basic features of radiation transfer in a 
fluidized bed, to choose an adequate model and, based 
on it, to derive the relationships that are required to 
calculate the radiative component of the external heat 
transfer coefficient. 

SPECIFIC FEATURES OF RADIATION TRANSFER IN A 
FLUIDIZED BED 

Most of the phenomena that may occur in radiation 
propagation in a ftuidized bed owe their origin to the 
wave nature of radiation [1]. Their quantitative de- 
scription is most elaborate, but they can be shown to 
be of no importance in such a medium as a fluidized 
bed. 

In order that the radiation interaction with a 
separate particle, which is determined by the re- 
lationship between the wave length ). and the size of 
particles as well as their concentration, can be esti- 
mated on the basis of the specific features of a high- 
temperature fluidized bed [1, 3, 4] the following ranges 
for the quantities 2, dp, yp have been chosen : 

). < 101tm, d p >  50 t i r e ,  yp = 1-2. (1) 

These inequalities show that:  
(1) The scattering parameter ndp/2 > 15 and the 

particles can be considered as large enough from the 
view-point of the scattering theory [5]. 

(2) Perturbations of the wave front on the particles 
have a diffraction nature and may be neglected because 
of the small characteristic distances Yp" (This follows 
from the estimates made by the formulae that were 
suggested in ref. [6].) 

(3) Solid materials used in fluidization may be 
considered as gray within the range of 2 given in (1). 

An irregularly and continually changing arrange- 
ment of particles in a fluidized bed, their optically 
roughness surface (as a result of crushing) and large 
dimensions allow the conclusion that the cooperative 
interference effects in the system considered are un- 
important [7]. 

Thus, the radiative transfer in a fluidized bed may be 
regarded as occurring due to multiple reflection by 
particles (which may also transmit a portion of the 
incident radiation). Moreover, the estimates show that 
for a quantitative description of this process the 
concepts of geometrical optics can be used. 

Certain information on the specific features of 
radiative transfer in a fluidized bed exists in the 
published literature on the experimental investigation 
of this process. It follows from these works that:  

(1) The radiative flux is independent of the dimen- 
sions of particles [8, 9], which leads to the importance 
of radiative heat transfer in large particle beds. 

(2) The radiative flux is independent of the velocity of 
a fluid (at the fluidization number > 3) [10] and the 

heat transfer surface location in a bed [11] and, 
consequently, of the bed structure near the surface 
which is determined by these parameters. 

(3) The radiative flux is independent of the radiative 
properties of a fluid [11]. 

Tile experimental results show that lhe basic charac- 
teristics of a fluidized bed that determine its radiative 
properties are the emissivity of the particles forming 
the bed and temperature distribution in the system 
[ii]. 

This analysis of the reported experimental data and 
of the specific features of a fluidized bed allows us to 
assume that the calculation of the emissivity of a bed 
and radiative transfer in it can be based on a repre- 
sentation of the bed as an assembly of large spherical 
particles with diffuse-gray surface in a transparent 
medium. 

TIlE CALCULATION TECIINIQUE Or" RADIATIVE 

TRANSFER IN A FLUIDIZED BED 

Calculations of radiation transfer in both homo- 
geneous and rarefied dispersed media are usually made 
by using the radiative transfer equation. Then the 
medium is characterized by the absorption and scat- 
tering coefficients, the emissive ability and the phase 
function [5, 12]. However, in dense dispersed media, 
such as a fluidized bed, {with the porosity range from 
0.4 to 0.93 [4] and the distance between particles as 
determined by equation (1)}, the radiative transfer 
equation is of limited usefulness, since the conditions 
for its applicability are not fulfilled [13, 14]. 

For this reason it seems more suitable to use another 
familiar method of calculation, based on the develop- 
ment of a special model of the medium. Of the models 
used for the description of radiation transfer in 
packings [15-17, 26] the most appropriate for a 
fluidized bed seems to be that used in optics, i.e. the pile 
model [16, 17]. There, a dispersed medium is repre- 
sented by an assembly of plane-parallel reflecting, 
absorbing and radiating plates (Fig. 1 ). The plates that 
form the pile, i.e. the elementary layers, are charac- 
terized by their reflection and absorption coefficients 
and by their emissivities, which depend on the proper- 
ties and concentration of particles forming the disper- 
sed medium. In a familiar version of this model for the 
case of a packing, it was assumed that each elementary 
layer has the thickness dp and the optical characteris- 
tics of the particle material. The concentration of 
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FIG. I. Model ofradiation transfer in a fluidized bed. The pile 
model. 
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FiG. 2. Model of an elementary layer of the pile: (a) a system 
to determine the optical characteristics of a 2-dim. dispersed 

medium ; (b) a cell of the system (a). 

particles in a fluidized bed varies within a wide range 
and this kind of relationship between the characteris- 
tics of the elementary layer and particles is inapplic- 
able. Consequently, the pile model can be applied to a 
fluidized bed if the elementary layer characteristics are 

Table 1. Designations of the view factors for the elements of 
the cell q~i-j 

i j 

a i c d e f g h m 

a P Q P tt  G G t t  T C 
i P P Q tl t l  G G T C 
c Q P P G tl  II G T C 
d P Q P G G II II T C 
e Y Z Y K 
f Y Y Z K 
g Z Y Y K 
h Y Z Y K 
m Cr C, C, C, L L L L M 

determined as functions of the properties of particles 
for a wide range of particle concentrations. 

RADIATIVE PROPERTIES OF A "I~VO-DIMENSION,-~L 
DISPERSED MEDIUM 

An elementary layer of the pile is a fiat uniform plate 
which is equivalent to a layer of dispersed material 
formed by the particles located in about the same plane 
drawn parallel to the surface of the dispersed medium. 
The elementary layer thusdefinedis amodel of a 2-dim. 
dispersed medium. In order to determine its optical 
characteristics in a wide range of properties of particles 
and their concentration, the system is used as shown in 
Fig. 2(a). It is made up of two ideally black planes, 1 
and 3, between which a model 2-dim. dispersed 
medium is located, i.e. a system of spheres arranged 
regularly at the nodes of a plane square-mesh grid. 

For the calculation of the optical characteristics of a 
2-dim. dispersed medium, i.e. the reflection, trans- 
mission and absorption factors, it was assumed that on 
plane 1 (Fig. 2a) a radiative flux with the surface 
density qb is prescribed, which is external relative to 
model 2, with self-emission of the latter being assumed 
to be zero. As a consequence of the scattering ofqb by 
the particles of model 2, a certain portion of it returns 
to surface 1 in the form of the flux reflected by the 
model, a portion is transmitted to plane 3, and the 
remaining radiation is absorbed by the particles of 
model 2. Thus, the reflectivity and transmissivity 
factors, the absorption coefficient and the emissivity 
(the latter two being of the same magnitude in 
accordance with the Kirchhoff law I-5]) of the 2-dim. 
dispersed medium model can be defined as the ratios of 
respective fluxes in the system of Fig 2(a)totheexternal 
flux of density qb incident on it from the side of plane 1. 

As has been shown above, in order to calculate the 
optical characteristics of the system at hand we may 
confine ourselves to the concepts of geometrical optics. 
This allows an assumption that the spheres forming 
the model have unit radius, while the distance between 
the planes in the system of Fig. 2(a), just as the grid 
spacing in model 2, is equal to 2yp. (The system then 
becomes more symmetric.) 

A regular arrangement of spheres in the model 
allows a further simplification of the calculation. A 
transition is made from the infinite system of Fig. 2(a) 
to one of its cells represented in Fig. 2(b). This cell is 
made up of the portions of black planes I and 3 (faces 1 
and n), 1/8 fractions of spheres (a, i, c, d, a', i', c', d') and 
auxiliary black faces e, f, g, h, e', f', g', h'. The cell will 
now be considered as a set of two closed systems 
comprised of black and gray diffuse isothermal sur- 
faces (a, i, c, d, e, f, g, h, !, m and a', i', c', d', e', f', g', h', n, 
m, respectively). 

The mathematical apparatus employed to calculate 
the radiation transport in these systems is described in 
ref. [5], The incorporated view factors for all the pairs 
of surfaces forming the upper and lower half of the cell 
have been calculated to within 1%. Table 1 contains 
abbreviated designations for these factors, while Figs. 



280 V .  A. BORODULYA and V. I. KOVENSKY 

(a )  

0 2 2 t ~  

0 14 f J J ~ G  
0 ioI{ 

0 06f/P 
o01 - 

I , i f 3 5 7 

Y~ 

FIc,. 3. Dependence of the view factors of cell elements on the cell dimensions. 

3(a) and (b) show the dependence of their magnitudes 
on the cell dimensions (parameter yp). In transition 
from an infinite system to a cell (Fig. 2b) it turns out to 
be necessary to prescribe the external radiation with 
density qb not only at the face 1 ofplane 1, but also on 
the side faces e, f, g, h in order to account for the 
contribution of the portion of plane 1 located beyond 
the cell. Moreover, it is essential that at the side faces e, 
f, g, h and e', f ' ,  g', h', the background radiation with 
densities qbs and q~,s, respectively, be prescribed in 
order to account for the effect of particles comprising 
the model but not entering into the cell. Due to the 
additivity of the thermal radiation fluxes, the prop- 
agation of the external and background radiation in 
the cell can be considered separately. 

When the external radiation is being scattered in the 
cell, the flux density on the black surfaces e, f, g, h, I and 
e', f', g', h', n is set (% and 0, respectively), while that on 
the surface m can be eliminated from consideration as 
an intermediate quantity. The gray surfaces a', i', c', d'  
of the upper portion of the cell (a, i, c, d in the lower 
portion) are identical, and determination of the flux 
density for one of these is sufficient. Thus, the external 
radiation transport is described by a system of two 
equations, which express the radiosity of the gray 
surfaces of the upper and lower parts of the cell, 
respectively, as a sum of the reflected and transmitted 
(by this surface) radiation from all the remaining 
elements of the cell 

a l q '  p - -  a s q  p = asqb,  

--  a3q'p + a l q p  = a4qb. (2) 

where 

a 1 = I - r z , ( 2 P + Q ) , a  z = T + 2 ( G + H ) ,  

a 3 = 3 C C , % ,  a4 = a2 zp, as  = a2 rp + 2 L C % ,  

in which the subscript r means that the reciprocal view 
factor has been used. 

The solution of equation (2) is 

a l a  5 -I- a3a 4 a l a  4 -t- aBa 5 
q~' a ~ - - a ~  ' qp a ~ - - a ~  (3) 

The background radiosity of the identical black 
faces of the upper (e', f', g', h') and lower (e, f, g, h) 
portions of the cell is unknown. For  this to be 
determined, the condition for the net background 
radiation flux through any end face to be equal to zero 
due to the translative symmetry of a 2-dim. dispersed 
medium can be used. On the black surfaces ! and n the 
density of the background radiation is equal to zero. 
The background radiation-induced radiosity of the 
grey surface of particles can be written in the same 
form as in the case of external radiation scattering 
equation (2). Thus, the background radiation trans- 
port can be calculated from the following system of 
four equations: 
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1~ - 3aTLq'~ - a63p - 2o7C,6'p = a 6 q  p + 2aTC,q' w 

i3aTLqb~ + q'b~ -- 2aTCr6r, -- a t ~  ----- 2a7C,% + a6q' p, 
l 

--O9qbs -- asq'b~ + al6v -- alofip = 0, 

--asqb~ - a 9 q ' b s  - -  alot~p + a13 '  p = 0 (4) 

here 

Sp(G + H) SmL 

~ =2Sb(1  - - 2 Y - - Z ) '  ~ =Sb(1 - - 2 Y - - Z ) '  

a s = 2rp(G + H ) +  2rpLC, 

a 9 = 2%LC + 2r v(G + H), 

ato = rp(2P + Q) + 3rvCC r 

Knowing the solution of the system of equations 
~.)-(4), one can calculate the flux reflected by model 2 
ncident on the face l), the flux transmitted to the face n 
f the cell and that absorbed by model 2 from the 
)llowing formulae 

Q,a = 4{SPIT(%, + 6p) + qp,] + S,Kqu, +Sm 

x JiM + 2t. + C,)C,(q '  w + 3',,) 

+ (L + 2C, + M)Lq'bJ},  

, Q ..... = S~ [4L(4L + M) + 8C, L + M] % + 4 

x {Sp[T(q'~, + 6'v) + q'p~] + SbKq'b, + S m 

x [(M + 2L + C,)  (qp, + b~) 

+ (L + 2C, + M)Lqb.~]}, 

Q,b~ = 4epSp[(a2 + CL)qb + 2(G + H + CL) 

• (qbs + q~,,) + (2P + Q + 3CC,) 

t%. + q'~. + ~ + ~'~)], 

where 
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Fic~ 4. Dependence of the optical characteristics of a 2-dim. 
dispersed medium (of an elementary layer) on the distance 

betx~een particles. 

aia2 + (2L + 3C,)C 
q~" = a ~ -- a 2 3 rpq~, 

a2 t'/4"f p 

q"- o7 =,,q 

2LCa t + aza3 
q;" - ,,21 - 023 r . q . ,  

a I a2"~ p 
q;" -- a, 2 - a]  qb, 

%, + qp~ = qp, q'p, + q'p, = q'p. 

Thereafter the optical characteristics of the 2-dim. 
dispersed medium and, consequently, of the elemen- 
tary layer of the pile are calculated from 

O.r Q ..... Q,.~ 
r t -  Q* rt T c t=  Qf (6) 

where 

Qr = [4Spa2 + (4L + AI) S,,] qb 

is the radiation flux from the black plane I incident on 
the portion of model 2, which enters into the cell (Fig. 
2a). 

The results of the calculation, i.e. the reflectivity and 
transmissivity factors and the emissivity of the elemen- 
tary pile layer, are presented in Fig. 4. As is seen from 
this figure, the optical coefficients of the elementary 
layer depend strongly on the distance between the 
particles within the range of densities which is typical 
ofa fluidized bed and, to a great extent, are determined 
by the properties of the particles forming the bed. As 
the distance between the particles, yp, increases, the 
transmissivity and reflectivity factors and the em- 
issivity of the elementary layer tend to their obvious 
limits (rt, ~t ~ 0, T, ~ 1). 

The calculated characteristics of the elementary 
layer of the pile in a wide range of the properties of 
particles and their concentration (the calculations of 
the 2-dim. dispersed medium characteristics are also 
given in the works of the present authors [18, 19]) 
allow us to turn to the study ofradiation transport in a 
fluidized bed using the pile model. 

RADIATIVE ttEAT TRANSFER BEI~VEEN AN ISOnlERMAL 
FLUIDIZED BED AND A DISTANT SURFACE 

When the surface, which takes part in radiative 
exchange with the bed, is removed to some distance 
away from it, the fluidized bed may be regarded as 
isothermal due to the agitation of particles. A tempera- 
ture gradient within the dispersed medium is absent 
then, and radiative heat transfer in the system can be 
considered as occurring between two surfaces, each of 
which has its own emissivity and temperature. The 
density of the net flux can be calculated in this case by 
the following well-known formula [5]:  
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qr O'Cnet (T~b 4 = - Tw), 

where 

(e~f  b 1 ) - ]  ~net = + - -  - -  1 . 
/"w 

Here, the unknown quantity is the emissivity of the 
fluidized bed surface. For this to be found, we may use 
the pile model, the elementary layers of which are 
characterized by the optical characteristics determined 
above. Since the fluidized beds are usually very thick 
compared with the size of particles, the following 
limiting relations, which determine r, tb, hold: 

lim r .  = rrb, l i m  "t" n = 0 ,  rrb Jr gfb = 1 ( 8 )  

where [26-1 

2 
"On- 1 r t  

r n = g n -  1 --~ 
I - - r n _ l r t  ' 

~ n - -  1 ~ t  
T n - -  

1 - -  r n _  1 r t  

The optical characteristics of the elementary pile 
layer and of the entire dispersed medium model are 
determined not only by the particle material properties 
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Ft~ 5. Experimental (a) [25] and predicted (b) dependences 
of the isothermal fluidized bed surface emissivity on bed 

expansion. 

but also by their concentration. At the prescribed 
mean porosity of the fluidized bed a dimensionless 
distance between the centers of the neighbouring 
particles can be calculated by the following formula 
which was derived from the expression of porosity for a 
cubic array of particles [1, 3, 4] (m >~ 0.48): 

.Vp = [~/6 (1 - m)] t ,3. (9) 

The fluidized bed surface emissivity calculated by 
equations (8) as a function of the emissivity ofparticles 
and the distance between them is presented in Figs. 5 
and 6. As is seen from these figures, the emissivity r-rb is 
mainly determined by the material properties of 
particles and, to a much lesser degree, by their 
concentration, which agrees with the results of exper- 
imental investigations. When the distance between 
neighbouring particles .% ~ 2, its further increase will 
actually have no effect on qb- 

As is seen from Fig. 6, the results of experimental 
studies from refs. [25, 27-30] (the emissivities of 
particles are borrowed from refs. [1, 28, 31]) are well 
described by cun'e I for an expanded bed (at yp >/ 2), 
with the mean deviation not exceeding 10%. 

Estimates made by the two-phase theory have 
shown that when a bed exchanges radiation with a 
surface of small dimensions, that are commensurate 
with the mean size of bubbles (e.g. radiometer peep- 
hole), then the mean porosity near it is rather high. 
Presumably, the emissivity of the fluidized bed surface 
may be regarded in this case as equal to its limiting 
value for an expanded system. 

Thus, one may conclude that the model suggested 
allows the accurate calculation of the emissive ability 
ofa  fluidized bed, and the correlations obtained can be 
used to calculate the value of efb provided the em- 
issivity of the particles forming the bed is known. 

RADIATIVE IIEAT TRANSFER BE~VEEN A NON- 
ISOTIIERMAL FLUIDIZED BED AND A SUBMERGED 

SURFACE 

Let a heat transfer surface be immersed in a fluidized 
bed and th~temperature of it be different from that of 
the bed core. As a result of the agitation of particles and 
energy exchange between the particles, the gas and 
heat exchanger, a certain temperature profile is de- 
veloped near the heat exchanger surface�9 The tempera- 
ture gradient near this surface is smaller in this case 
than in an isothermal bed, and the possible heat fluxes 
decrease. Special investigations [20] have shown, in 
particular, that the radiative flux emitted by the bed 
depends markedly on the temperature distribution 
near the heat transfer surface. The non-isothermicity of 
the bed causes a change in the magnitude of the 
radiative flux. To account for this effect, it has been 
suggested [20] that in equation (7) the effective 
emissivity of the fluidized bed surface should be used 
instead o f  the true value of etb. However, a rigorous 
derivaiion of the formula for q,, which takes into 
account the fact that for the effective emissive ability 
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the relation 1 - rfb = r.rt , # r., is valid, leads to the 
following expression, which differs from equation (7): 

[Ce ., ) 
q ,  = - T'w ( 1 o )  

where r,,,,, is ca lcu la ted in the same way  as for  equa t i on  
(7). 

The suggested effective emissivity of the bed is a 
function of a number of the system parameters: er = 
r.~ (T,,, Tfb, e,,, %, m): Certain information on e, is given 
in ref. [20] in the form of the experimental function 
c, (T,,) at several values of Trb. However, these data are 
too few to reveal the actual form of the function e, and 
its coupling with such system parameters as c,,., gp, m. It 
turns out to be possible to determine the value of e, as a 
function of all the basic parameters from the solution 
of the problem on radiative transport in a dispersed 
medium under steady-state conditions with the aid of 
the pile model. In this case the non-isothermal zone 
between the heat transfer surface and the bed core is 
represented by an assembly of N elementary layers 
(Fig. 1), the optical characteristics of which are de- 
termined, as shown above, by the properties of the 
particles and their concentration. 

The heat transfer surface is represented in the model 
by the 0th plane with the reflectivity rw and tempera- 
ture T,,. ; the core is represented by the (N + l)th plane 
having the parameters rfb , Tfb (rfb = 0). 

In the process of external heat transfer ofa fluidized 
bed a substantial part is played by a convective- 
conductive transport. The latter should therefore 
be considered together with the radiation transfer. 
In the pile model, the convective-conductive 
component is accounted for as thermal conductivity of 
gaseous intertayers between the elementary layers, the 
thickness of which is determined as [21] 

l = (yp - 0.87)dp. (11) 

Since the thermal resistance of the fluidized bed is 
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FIG. 6. Dependence of the expanded (I) and packed (2) bed 
emissivity on the emissivity of particles. 

offered mainly by the gas, the thermal conductivity of 
the elementary layers is assumed to be infinitely high 
and the effective thermal conductivity of the gas 
interlayer between them is determined by the external 
heat transfer coefficient calculated from any of the 
relations of refs. [3, 20, 22] as 

k = ~ k k l ( N  + 0.5). (12) 

It is assumed in this formula that the gas layer nearest 
to the heat exchanger is half as thick as all the 
remainder layers. This determination of the effective 
thermal conductivity makes it possible to calculate a 
change in Cqk caused by radiative transfer. 

On the average, the temperature distribution in a 
non-isothermal zone of the bed is steady, and in order 
to derive the governing system of equations one may 
use the energy balance relations. In this case the energy 
radiated by the ith elementary layer in both directions 
(2a e T4)is equated to the sum ofthe absorbed fraction 
of radiative fluxes from all the remaining elementary 
la)ers and the difference between the conductive fluxes 
on the left and on the right from the selected elemen- 
tary layer 

N 

[6,k(2 - r k - - t  a ;  - r ~ - k a : )  - E ( i  - k )  (13) 
k = l  

- -  . + - 4. x (#~  + f l? , )a :  - E ( k  - i)(;,,~ + "t,~)a, ] x ,  

. ,+ 
Jr  ] l iX i+ l "~- V i X i -  l - -  (]ti "{- Vi) X i  = ('t'i-~,'+ I -1- t i N +  l )  

x c,~ + ( f t ~  + / 3 ~ ) c w x ~ , i  = 1 . . . . .  N 
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FIG. 7. Temperature distribution in a non-isothermal zone of 
the fluidized bed in the case of radiative transfer: (a) yp = 1 ; 
(b)2;1,rw = 0.1;% = 0.1;2,rw = 0.1;ep = 0.9;3,r,, = 0.9; 

e v = 0.1; 4, r,, = 0.9;% = 0.9. 
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where 

X i -= Ti./Tfb, Xo = Tw/Tfb,  ltl = k/o" lz.i+ t T~b, 

1 
v i = k / a l i . i _  t T3b, a~ = r,,k 1 - r ~ - r  + 

N - k  

-- + 
+(1  - r~_kr)(1 r k - t r s - ~ + O  

-- + 
a~ r'k l - - r k _ t r x _ k §  

_ + 9 
+ (1 - r L s r ) ( l  - rk r s -k)  

f l ~  = r N _  i 
ZX_k(l -- rs_ir fb  ) 

"Cv_i(l -- r v_krrb ) '  

ZX-k(l -- rx - i+  1 rib) 

" t ' . v - i+  1 (1 - -  rx_krtb  ) ' 

~k- ,  (1 -- qrw) . 1+  

lik q ( l  - rk_ t r,,.) 

7 i k  = r/--s 
"rk-S (1 -- rz_ t r~,.) 

t'i_ t (1 - -  rg_ z rw) '  

), i # k  E(i)  = {3, i~<0 
&ik= 1, i = k "  1, i > 0 "  

The nonlinear system (13) can be solved by the 
Newton method which is quite stable for this case. The 
solution of equation (13) at the prescribed porosity,  the 
properties of particles and of the surface is the 

temperature distr ibution within the non-isothermal 
zone of the prescribed depth N. Some of the possible 
temperature distr ibutions are presented in Figs. 7 and 
8. The temperature profiles (Fig. 8) vary markedly 
during the transition from packed to rarefied systems. 
This occurs because of a change in the relative 
contribution of the radiative and convective- 
conductive transfer. With an increase in the 
porosi ty  of the bed, the major  contr ibution comes from 
radiation,  since in this case the number  of layers 
part icipat ing in radiative exchange increases, and the 
distr ibution of temperature at a marked rarefaction 
approaches that in the case of purely radiative transfer 
(Fig. 7). In transition to weakly concentrated systems, 
the radiative properties of particles and ofheat  transfer 
surface become substantial.  

The calculated temperature distribution near the 
surface allows determinat ion of the heat fluxes. The 
convective-conductive flux is calculated by the 
formula 

qkk = ~ ( T s  -- Tw). (14) 

The radiative flux emitted by any of the model 
planes to the side of the 0th ( - )  and N + l th  ( + )  
surfaces is determined by the following expression: 

4- 4 ~ --+- 
q,- = ,, T~. T .  ~,~ + ( T &  - ~,~ O, . 05) 

k=O 

where 

+ E ( k - i ) 7 ~ q  a k ,  
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FIG- 8. Temperature distribution in a non-isothermal zone of the fluidized bed in the case of 
radiative-conductive transfer: (a, b) dp = 0.5 mm; (c, d) dp = 2 mm; (a, c) yp = 1.01 ; (b, d) 3,'p = 5. 1, 2, r,, = 

0 .1 ;3 ,4 ,0 .9 ;1 ,3 ,% = 0 .1 ;2 ,4 ,% = 0.9. 
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c',k- = tSzdz k +E(i  - k ) f l ~  r v_ i+  + s a~- 

+ E (k - i) 7ik a~-, 
r l -  I 

0 k -= ( T ~  4 ,,1- 4- - - T,,.), T,,..)/(Trb 

and is a function of the radiative properties and 
temperature of all the model elements. 

The radiative flux emitted by the fiuidized bed to the 
~ide of the submerged surface is equal to the value of q[ 
:alculated from equation (15). The ratio of q[ to the 
flux from the isothermal layer will yield the following 
.~xpression for the effective emissive ability of the non- 
isothermal fluidized bed: 

&: = (1 --  A)  (T , , /T tb )  "~ + A,  (16) 
~ f b  

where 
N + l  

. 4 =  Y'. ci~ O~. 
k = l  

The coefficient A in equation (16) in the case of a 
purely radiative exchange is independent of the tem- 
peratures Tw and Trb, and the quantity ee is a linear 
function in the coordinates ee/eft, and (Tw/T~b) 4 [23, 
24]. Moreover 

A = A (ew, %, m, N). (17) 

In the case of a radiative-conductive exchange, the 
dependence (16) becomes more complex in virtue of 
the nonlinear nature of the" system (13) and the 
coefficient A turns out to be a function of a large 
number of parameters 

A = A (c,.,  %,  m, N ,  T,~., Tfb ). (18)  
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Figure 9 shows the results of calculation of ~ by 
equation (16) for the cases of radiative and complex 
exchange at different values of the system parameters. 
As is seen from this figure, the convective-conductive 
transfer in a packed system almost completely sup- 
presses the effect of radiative properties of the particles 
and of the wall. In a rarefied system, the effect ofep, ew 
on the function e~ is much more noticeable, while the 
nonlinear nature of the system (13) is manifested only 
at sufficiently large difference of temperatures Tw, Tt~, 
(Tw/T,b < 0.6). 

Figure 10 shows the results of an experimental 
investigation of the function e, (Tw, Trb), given in ref. 
[20], in the initial coordinates and, according to 
equation (16), in the coordinates er and (T, , /TtO 4. 
Comparison of Figs. 9 and 10 shows that the equation 
obtained by the suggested model allows a rather 
accurate calculation of the effective emissive ability of a 
nonisothermal fluidized bed. Then, taking into ac- 
count that the non-linearity is manifested only at a 
sufficiently large difference between the temperatures 
Tw and Ttb, the calculation ofe~ can be carried out in a 
more simple linear radiative approximation (at Tw/Tfb 
> 0.5). 

As is seen from equation (16), the effective emissivity 
is an integral characteristic of the temperature distri- 
bution near the heat exchanger surface. A rather 
accurate, as follows from Figs. 9 and 10, description of 
the experimental function e, (T,,., Tfb) allows the use of 
the equations obtained, together with the experiment 
similar to that described in ref. [20], to calculate the 
temperature profile and the depth of the non- 
isothermal zone. Thus, the estimates made for the 
condition of the experiment described in ref. [20] have 
shown that the thickness of the non-isothermal zone is 
equal to about 10-15 particle layers with appreciable 
cooling ofparticles from 150 to 400 K for the first (from 
the wall) layer of particles at T~, = 573 K and Tt~, = 
873-1498 K. 

CONCLUSION 

A qualitative and quantitativeconfirmation of the 
predictions by using the available experimental data 
shows that the model suggested gives a fairly true 
picture of radiation transfer in a fluidized bed. Its 
development was favoured by a rigorous determi- 
nation of the ranges of basic process parameters, 
elucidation of the pertinent properties of the dispersed 
medium from the available experimental data, and 
assessment of the applicability of different methods 
used for radiation transport calculation. A relative 
simplicity of the model has made it possible to obtain 
the results (emissivity, effective emissive ability) that 
can be directly used in the engineering practice which 
employs the well-known relations for the calculation 
of radiative fluxes. 

REFERENCES 

1. S.S. Zabrodsky, ttigh-Temperature Fluidized Bed Plants. 
Izd. Energiya, Moscow (1971). 

2. G. K. Rubtsov and N. I. Syromyamikov, Emissivity and 
calculated radiation surface in a fluidized bed, Izr. 
VUZov, Energetika No. 5, 118-122 (1963). 

3. J.S.M. Botterill, Fluid-Bed lleat Transfer. Gas-Fluidized 
Bed Behariour and Its Influence on Bed 7hermal Proper. 
ties. Academic Press, London (1975). 

4. I. M. Razumov, Fluidization and Loose Matericd 
Transport. Izd. Khimiya, Moscow (1977). 

5. R. Siegel and J. R. ttowell, Thernml Radiation tleat 
Transfer. McGraw-Hill New York (1972). 

6. K. S. Shifrin, Light Scattering in a Turbid Medium. Izd. 
Tekhnikoteor. Lit., Moscow (1951). 

7. V.G. Vereschchagin and L. V. Matskevich, Towards the 
problem of cooperative effects in radiation scattering, Zh. 
Prikl. Spektroskop. 25(6), 1050-1057 (1976). 

8. A. P. Baskakov, G. K. Malikov and Yu. M. Goldobin, 
The effect of radiative heat transfer on the heat transfer 
coefficient in a high-temperature fluidized bed, in tligh- 
Temperature Endothermal Processes in a Fluidized Bed, 
pp. 192-196. Moscow (1968). 

9. J.S.M. Botterill and C. Y. Sealey, Radiative heat transfer 
between a gas-fluidized bed and an exchange surface, Br. 
Chem. Engng 15(9), 1167-1169 (1970). 

10. A. P. Baskakov, S. V. Berg, O. K. Vitt, N. F. Fillepovsky, 
V. A. Kirakosyan, Yu. M. Goldobin ,and V. K. Maskaev, 
Heat transfer to objects submerged in fluidized beds, 
Powder Technol. 8(5/6), 273-282 (1973). 

11. Yu. M. Goldobin and V. M. Makushenko, An experim- 
ental investigation of the effective emissivity of a high- 
temperature fluidized bed, in Industrial Fluidized-Bed 
Furnaces pp. 23-26, Sverdlovsk (1976). 

12. K. S. Adzerikho, Lectures on the Radiatire Energy 
Transfer Theory. Izd. BGU, Minsk (1975). 

13. A. P. Ivanov, Optics of Scattering Media. Izd. Nauka i 
Tekhnika, Minsk (1969). 

14. A. P. Ivanov and V. G. Danilyuk, Specifc features of light 
scattering by dispersed media with densely packed 
particles, Optika Spektroskop. 42(4), 739-746 (1977). 

15. D. Vortmeyer, W//rmestrahlung in dispersen Feststoff 
Systemen, Chem. Ing.-Tech. 51(9), 839-851 (1971). 

16. Yu. I. Chekalinskaya, Radiation propagation inside a 
powder-like bed, J. Engng Phys. 3(7), 43-50 (1960). 

17. A. P. Ivanov, On variation of the transmission spectra of 
dispersed layer for the cases of rarefied and dense 
packings, Zh. Prikl. Spektroskop. 25(5), 880-984 (1976). 

18. V. I. Kovensky, Towards calculation of the emissive 
ability of a dispersed system J. Engng Phys. 38(6), 
983-988 (1980). 

19. V. A. Borodulya and V. I. Kovensky, Towards calcu- 
lation of the emissive ability of dispersed systems, in lteat 
and Mass Transfer. Physical Foundations and Methods, 
pp. 31-34. Minsk (1979). 

20. A. P. Baskakov (Editor), tteat and Mass Transfer Pro- 
cesses in a Fluidized Bed. Izd. Metallurgiya, Moscow 
(1978). 

21. J. D. Cabor, Wall-to-bed heat transfer in fluidized and 
packed beds, Chem. Engn 9 Prog. Syrup. Ser. 66(105), 
76-86 (1970). 

22. V. A. Borodulya, V. L. Ganzha and A. I. Podberezsky, 
Heat transfer between a fluidized bed of coarse particles 
and a surface, inProblems of lleat and Mass Transfer in 
Confoustion Processes Used in Power Engineerin 9 ( Proc. 
Int. School-Seminar), pp. 141-157. Minsk (1980). 

23. V. A. Borodulya and V. I. Kovensky, Towards calcu- 
lation of radiative heat transfer between a fluidized bed 
and a surface, in Problems of tleat and Mass Transfer in 
Combustion Processes Used in Power Emgineering ( Proe. 
Int. School-Seminar), pp. 141-157. Minsk (1980). 



Radiative heat transfer 287 

I. V. A. Borodulya and V. I. Kovensky, Towards calcu- 
lation of radiative heat transfer between a fluidized bed 
and a surface, J. Engng Phys. 40(3), 466-472 (1981). 

i. V.S. Pikashov, S. S. Zabrodsky, K. E. Makhorin and A. I. 
llchenko, Investigation of the components of complex 
heat transfer in a fluidized bed, Izr. Akad. Nauk BSSR 
2(2), llX)-109 (1969). 

5. C. K. Chan and C. L. Tien, Radiative transfer in packed 
spheres, Trans. Am. Soc. Mech. Enyrs, Series C, J. tteat 
Transfer No. 1, 52-59 (1974). 

7. A. I. llchenko, V. S. Pikashov and K. E. Makhorin, 
Investigation of radiative heat transfer between a flui- 
dized bed and bodies immersed in it, d. Emdng Phys. 14(4), 
602-609 (1968). 

28. G. P. Kuchin, Investigation of complex heat transfer 
between a fluidized bed and a body immersed in it, Thesis 
(Cand. Sci.), Minsk (1977). 

29. A. I. llchenko, Investigation ofradiative-conductive heat 
transfer in a fluidized bed, Thesis (Cand. Sci.), Minsk 
(1968). 

30. Yu. M. Goldobin, Z. N. Kutyavin and O. M. Panov, On 
experimental determination of the effect of the fluidized 
bed and surface temperatures on radiative heat transfer, 
in Industrial Fluidized Bed Furnaces, pp. 53-55. Sverd- 
Iovsk (1973). 

31. V. S. Pikashov, K. E. Makhorin and G. P. Kuchin, 
Pyrometry of fluidized bed particles, Khim. Tekhnol. No. 
5, 33-36 (1976). 

TRANSFERT RADIATIF ENTRE UN LIT FLUIDISE ET UNE SURFACE 

R4sum~--Un mod6le de transfert radiatif dans un milieu dispers6 est sugg6r6 pour calculer l'6missivit6 d'un 
lit fluidisd isotherme, I'aptitude zi ~mettre d'un lit non-isotherme et la distribution de temperature prEs d'une 
surface dans le lit quand les propri6t~s radiatives des particules et de l'6changeur de chaleur sent donn~es. 

STRAFILUNGSAUSTAUSCtt ZWISCItEN EINEM FLIESSBETT UND EINER OBERFL/~CHE 

Zusammenfassung--Es wird ein Modell des Strahlungsw~rmeaustausches in einem dispersen Medium 
vorgeschlagen, mit dessen Hilfe es m6glich ist, das Emissionsverm6gen eines isothermen bzw. das effektive 
Emissionsverm6gen eines nicht-isothermen Fliel3bettes und die Temperaturverteilung an einer wSrme/iber- 
tragenden Fl~iche bestimmter Ausdehnung zu berechnen, wenn die Strahlungseigenschaften der Partikel und " 

des WSrmeaustauschers gegeben sind. 

.rlYql, lCTblf l  TEHYlOOBMEH HCEB]],OO)Ktl)KEHHOFO C.llO,q C HOBEPXHOCTblO 

AnHoTauH~--B pa6oTe npe;Laaraerca .~to:~e.ab nepelloca 113.ayqettlla B 2]ttcnepcuoH cpe~e, no3ao.aaroulaa 
Bblqnc.l~lTb palllial111onnble xapaKTepncTltKl! uceBilOoTgnTgeHtlOrO c.loR: cTene.b ~epnoTu H3olep.MIiq- 
itol-o neeB,aOO>Kii)KelmOFO C.'lo~t. 9qbqbeKTnally~o ll3.ayqaTe.qbllylo cnoco6HOCTb ttett3oTepMIlqecKoro 
c.lofl n pacnpe;le.lenue TeMnepaTypbi B6.'111311 noBepxnocTn Ten.loo6MelnlnKa npt! 3ailaHtlb~x CBO]]CTBaX 

qaCT|lll, ven~aoo6Melumra, pacLunpenun c~' lof l .  


